Recurrent Binary Embedding for GPU-Enabled Exhaustive Retrieval from Billion-Scale Semantic Vectors

نویسندگان

  • Ying Shan
  • Jian Jiao
  • Jie Zhu
  • J. C. Mao
چکیده

Rapid advances in GPU hardware and multiple areas of Deep Learning open up a new opportunity for billion-scale information retrieval with exhaustive search. Building on top of the powerful concept of semantic learning, this paper proposes a Recurrent Binary Embedding (RBE) model that learns compact representations for real-time retrieval. The model has the unique ability to refine a base binary vector by progressively adding binary residual vectors to meet the desired accuracy. The refined vector enables efficient implementation of exhaustive similarity computation with bit-wise operations, followed by a nearlossless k-NN selection algorithm, also proposed in this paper. The proposed algorithms are integrated into an end-to-end multi-GPU system that retrieves thousands of top items from over a billion candidates in real-time. The RBE model and the retrieval system were evaluated with data from a major paid search engine. When measured against the state-of-the-art model for binary representation and the full precision model for semantic embedding, RBE significantly outperformed the former, and filled in over 80% of the AUC gap in-between. Experiments comparing with our production retrieval system also demonstrated superior performance. While the primary focus of this paper is to build RBE based on a particular class of semantic models, generalizing to other types is straightforward, as exemplified by two different models at the end of the paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Learning of Semantic Word Representations to Implement a Content-Based Recommender for the RecSys Challenge'14

In this paper, we will discuss a recommender system that exploits the semantics regularities captured by a Recurrent Neural Network (RNN) in text documents. Many information retrieval systems treat words as binary vectors under the classic bag-of-words model; however there is not a notion of semantic similarity between words when describing a document in the resulting feature space. Recent adva...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Deep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss

Deep supervised hashing has emerged as an influential solution to large-scale semantic image retrieval problems in computer vision. In the light of recent progress, convolutional neural network based hashing methods typically seek pair-wise or triplet labels to conduct the similarity preserving learning. However, complex semantic concepts of visual contents are hard to capture by similar/dissim...

متن کامل

Large-Scale Graph Indexing Using Binary Embeddings of Node Contexts

Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations in terms of feature vectors. Retrieving a query graph from a large dataset of graphs has the drawback of the high computational complexity required to compare the query and the target graphs. The most importan...

متن کامل

GPU-Disasm: A GPU-Based X86 Disassembler

Static binary code analysis and reverse engineering are crucial operations for malware analysis, binary-level software protections, debugging, and patching, among many other tasks. Faster binary code analysis tools are necessary for tasks such as analyzing the multitude of new malware samples gathered every day. Binary code disassembly is a core functionality of such tools which has not receive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.06466  شماره 

صفحات  -

تاریخ انتشار 2018